skip to main content


Search for: All records

Creators/Authors contains: "Levin, Joshua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider estimating the magnitude of a monochromatic AC signal that couples to a two-level sensor. For any detection protocol, the precision achieved depends on the signal's frequency and can be quantified by the quantum Fisher information. To study limitations in broadband sensing, we introduce the integrated quantum Fisher information and derive inequality bounds that embody fundamental tradeoffs in any sensing protocol. These inequalities show that sensitivity in one frequency range must come at a cost of reduced sensitivity elsewhere. For many protocols, including those with small phase accumulation and those consisting of π-pulses, we find the integrated Fisher information scales linearly with T. We also find protocols with substantial phase accumulation can have integrated QFI that grows quadratically with T, which is optimal. These protocols may allow the very rapid detection of a signal with unknown frequency over a very wide bandwidth. 
    more » « less
  2. Abstract

    Communication networks have multiple users, each sending and receiving messages. A multiple access channel (MAC) models multiple senders transmitting to a single receiver, such as the uplink from many mobile phones to a single base station. The optimal performance of a MAC is quantified by a capacity region of simultaneously achievable communication rates. We study the two-sender classical MAC, the simplest and best-understood network, and find a surprising richness in both a classical and quantum context. First, we find that quantum entanglement shared between senders can substantially boost the capacity of a classical MAC. Second, we find that optimal performance of a MAC with bounded-size inputs may require unbounded amounts of entanglement. Third, determining whether a perfect communication rate is achievable using finite-dimensional entanglement is undecidable. Finally, we show that evaluating the capacity region of a two-sender classical MAC is in fact NP-hard.

     
    more » « less